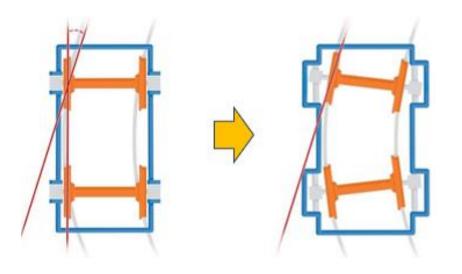
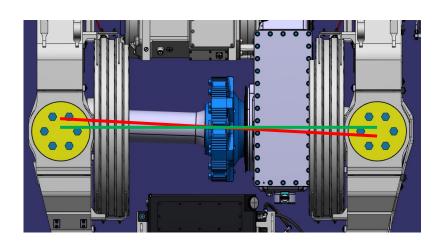
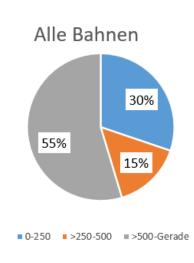

1 Wirksamkeit von Radsatzführungen

1.1 STRUKTUR DES PROGRAMMS - REMINDER

P5 und P6: Rollmaterial und Kosteneffizienz technischer Lösungen

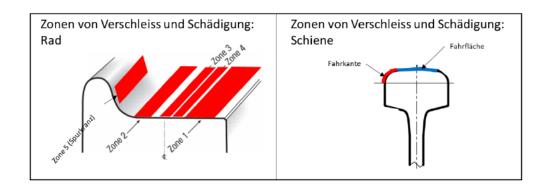


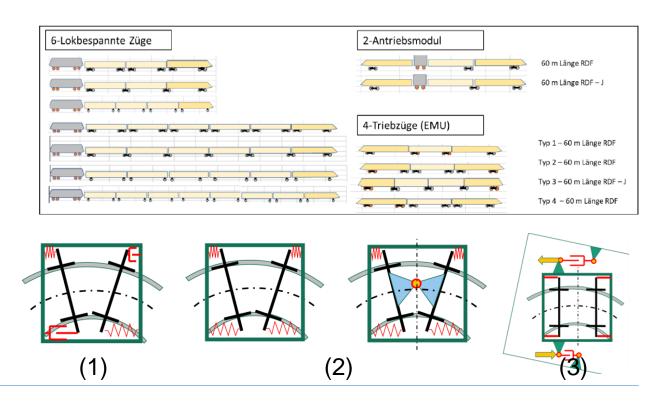

- ➤ Die Systemführerschaft adressiert in ihren Teilprojekten die grössten Verschleissfaktoren.
- ➤ Der Einfluss des Rollmaterials ist wichtig, aber:
 - Was sind die wichtigsten Einflussfaktoren und wie lassen sie sich quantifizieren?
 - Welche technischen Lösungen sind bei den derzeitigen Drehgestellen (DG) möglich?
 - Sind diese Lösungen auf unseren Strecken in Bezug auf LCC rentabel?
- Welche Optionen werden nun in Betracht gezogen?



1.2 VERSCHLEISSFAKTOREN

Rollmaterial (RM) für die Meterspur - Erkenntnisse


- > Die Fahrzeuge sind mit DGs mit starrer Achsführung ausgestattet.
- > Keine radiale Ausrichtung möglich, die Achsen passen sich nicht dem Bogen an.
- Ein grosser Achsabstand des DG ist ungünstig.
- > Strecken mit kleinen Kurvenradien und eine hohe Achslast des Rollmaterials verstärken den Verschleiss.



1.3 QUANTIFIZIERUNG

Effizienz = reduzierte Reibungsarbeit

FIMO = Fahrzeug-Fahrweg Interaktion Meterspur Optimierung = Optimisation interaction voie-véhicule métrique

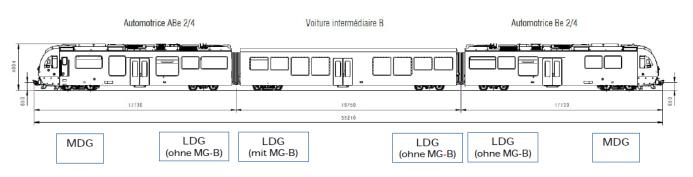
- > Berechnung der spezifischen Reibungsarbeit an der Schnittstelle Schiene/Rad: FIMO
- Alle Zugkonfigurationen und Achsführungen werden modelliert.
- ➤ Aktiv (1) → sehr enge Bögen, passiv (2) → enge Bögen, Aktiver Drehdämpfer (ADD) (3) → nicht sinnvoll
- > Die Quantifizierung muss spezifisch sein, Effizienz f(Fahrzeug, Drehgestell, Radprofil, Traktion)

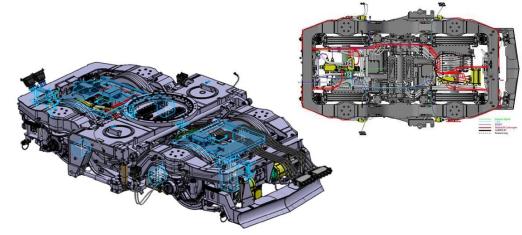
1.4 ROTER FADEN P5

Von (physikalischer) Arbeit zu \$

BSA = Bahn Spezifische Analyse

Analyse spécifique des chemins de fer



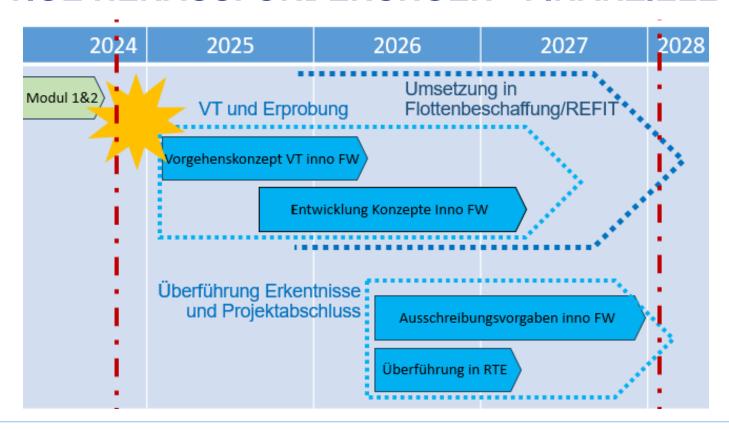

- > Die Kalibrierung von FIMO erfolgt anhand von Betriebsdaten und auf spezifische Weise.
- ➤ Ein FIMO-Ergebnis entspricht einem tatsächlichen Verschleiss, das Verbesserungspotenzial kann daher vs. IST geschätzt werden.
- On-Demand-Analysen oder -Studien können mit BSA durchgeführt werden.
- > Eine Fokussierung der Aktivitäten P5 ist erforderlich.
- > P5 verfügt über ein Tool und einen Prozess.

1.5 REEQUIPMENT-LÖSUNG

Business Case Basis für Flotte ABe 4/12

- Wahl des DGs und Vorstudie zur Machbarkeit der Neuausstattung
- ➤ Die Kopplung der Achsen erfordert eine massive Änderung der DG → Lösung wird verworfen
- > Die Hauptkomponenten des DG begrenzen die radiale Orientierung der Achsen auf +/- 6 mm.
- Die Kosten für die Flotte ABe4/12 der tpf wurden durch Stadler und Liebherr abgeschätzt, Flotte von 10 Fahrzeugen -> Business Case für P6
- Kostenstruktur:
 - Kosten für nachgerüstete und neue DG
 - Einmalige Kosten inkl. Engineering, Material, Stunden für Einbau
 - Kosten für die Zulassung nach einem mit dem BAV besprochenen Konzept
- > Potenzielle Einsparungen werden auf der Grundlage von FIMO und IST-Daten geschätzt

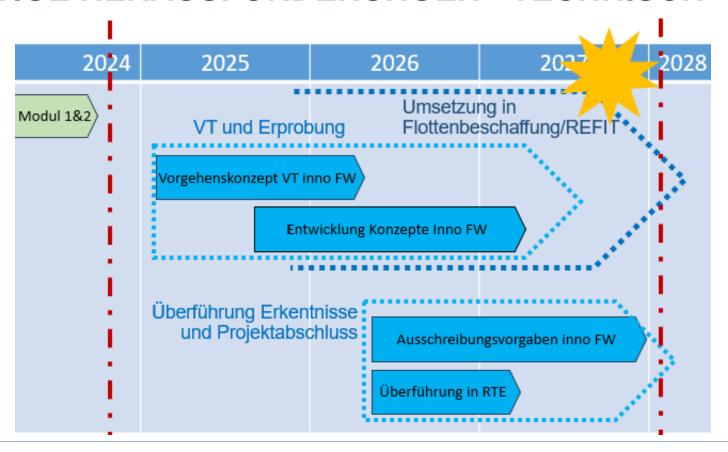
1.6 KALKULIERTE VARIANTEN


Die Lösung der aktiven Achsführung wird vorrangig berechnet

Pos	System	Ausführung	Option	Ziel	Name
1	LiCAS-Standard	2 Aktuatoren pro Radsatz	mit/ohne CAN	Nachrüstung	LiCAS-Std-2
2	(Elektro-Hydraulisch)	1 Aktuator pro Radsatz	mit/ohne CAN	Neubau	LiCAS-Std-1
3	Li CAS-Servo	2 Aktuatoren pro Radsatz	KGA/GGA	Nachrüstung	LiCAS-Svo-2
4	(Hydromechanisch)	1 Aktuator pro Radsatz	KGA/GGA	Neubau	LiCAS-Svo-1
5	ADD			Neubau	ADD
6	GGA	mechanisch		Neubau	GGA-mech
7	elastisch, HALL			Neubau u. Nachrüstung	Hall
8	SKK			Referenz	SKK
9	steif			Referenz	steif

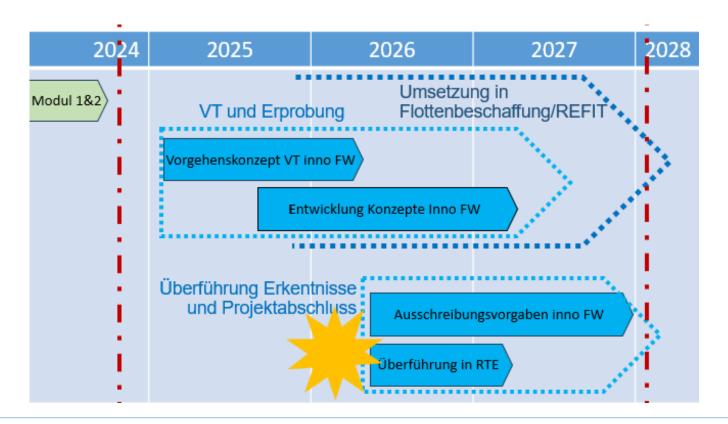
- Die Eingabedaten für alle Varianten sind verfügbar.
- ➤ Die Varianten werden mit der SKK-Referenz verglichen.
- > Varianten mit aktiver Achsführung werden mit Priorität 1 berechnet.

1.7 ZUKÜNFTIGE HERAUSFORDERUNGEN - FINANZIELL



- Die Studienphase ist "abgeschlossen", 2 Phasen sind noch geplant.
- Das P5-Projekt ist bis Ende 2027 finanziert.
- Die Notwendigkeit, die Grundsätze durch ein Test-Drehgestell zu überprüfen, ist erwiesen und wird mitgetragen.
- Die Finanzierung muss geklärt werden.

1.7 ZUKÜNFTIGE HERAUSFORDERUNGEN - TECHNISCH



- > Die Rentabilitätsberechnung wird die technische(n) Wahl(en) festlegen.
- Das Projekt muss zeigen, wie das erworbene Wissen umgesetzt werden kann.
- ➤ Zukünftige Projekte zum Erwerb von Ausrüstung sind eine Chance und sollten EVU und Hersteller einschliessen.

1.7 ZUKÜNFTIGE HERAUSFORDERUNGEN - STRATEGISCH

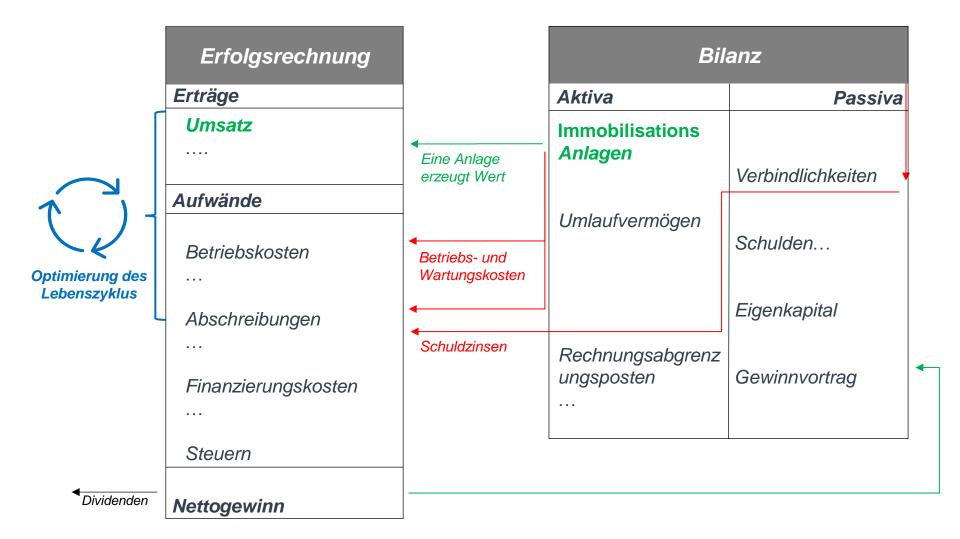
- Gewährleistung des freien Wettbewerbs und Durchführung eines Testdrehgestells in möglichst kurzer Zeit und zu möglichst geringen Kosten
- > Sicherstellung des freien Zugangs und dauerhafte Sicherung des erworbenen Wissens für zukünftige Märkte
- Zukünftige Ausrichtung zwischen BAV und EVU-Direktoren festzulegen

1.8 DEFIS FUTURS - STRATEGIQUE

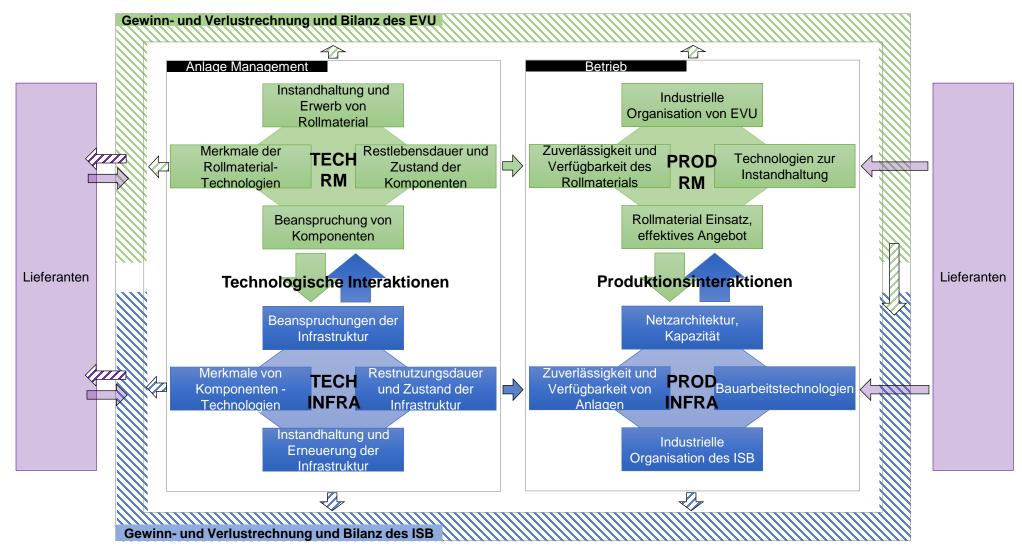
DIE OPTIMALE RM-TECHNIK MUSS NOCH PRÄZISIERT WERDEN, ABER: VT und Erprobung Umsetzung in Flottenbeschaffung/REFIT

- KONDITIONIERUNG DES SCHIENENKOPFES (SKK)
- OPTIMIERTES VERSCHLEISSPROFIL FÜR DIE RÄDER

KÖNNEN JETZT EINGESETZT WERDEN.


- > Garantir la libre concurrence et réaliser un BD d'essai dans les meilleurs délais et coûts
- > Assurer le libre accès et pérenniser les connaissances acquises pour les marchés futurs
- Orientation future à définir entre OFT et directeurs des ETF

2 Wirtschaftliche Rentabilität der Lösungen


2.1 WAS VERSTEHT MAN UNTER WIRTSCHAFTLICHER RENTABILITÄT?

2.2 DIE WIRTSCHAFTLICHKEIT UND DAS SYSTEM "BAHN"

2.3 DIE MATRIX DER INTERAKTIONEN



Beispiel: Neue Lösung Im Vergleich zu SKK: +: Mehrkosten, = geringe Auswirkungen, - Einsparungen

Technische Lösungen Impacts	Drehgestelle mit lenkbaren Achsen - passive Systeme	Drehgestelle mit lenkbaren Achsen - aktive Systeme	
Entwicklung und Beschaffung	+	++	
Unterhalt der Drehgestelle (Zeit zwischen 2 Reprofilierungen)	-		
Lebensdauer der Achsen	-		
Unterhalt der Schiene – SKK	=		
Unterhalt der Schiene – Verschleiss der Fahrkante	= / -	/	
Unterhalt der Schiene – Abnutzung der Lauffläche, Bogen aussen	= / -	/	
Unterhalt der Schiene – Abnutzung der Lauffläche, Bogen innen	= / -	/	
Schieneninstandhaltung – Schlupfwellen	= / -	- /	
Unterhalt der Schiene - Befestigung	Nicht berücksichtigt	Nicht berücksichtigt	
Umweltauswirkungen - Lärm	= (vgl. SKK)	(vgl. SKK)	
Umweltauswirkungen - CO2	Zu definieren	Zu definieren	
Umweltauswirkungen - Schmiermittel	= (vgl. SKK)	(vgl. SKK)	

3 Fragen und Diskussion

