

Zielsetzung, Was sind Nachrüstlösungen?

Zielsetzung (LO-2.2)

Untersuchung des Potentials von Nachrüstlösungen bei repräsentativen Drehgestellen, die in grösserer Stückzahl bei den Meterspurbahnen im Einsatz stehen.

Was sind Nachrüstlösungen?

Als Nachrüstlösungen werden nachträgliche Anpassungen an bestehenden Fahrzeugen und Fahrwerken bezeichnet. Wesentliche Veränderungen am Drehgestellrahmen werden nicht als Nachrüstlösungen eingestuft, da sie einen sehr grossen Einfluss auf den Festigkeitsnachweis, die Zulassung und damit auf die Kosten haben.

→ Keine Veränderungen am Drehgestellrahmen

Grobauswahl und Vorgehen

Grobauswahl

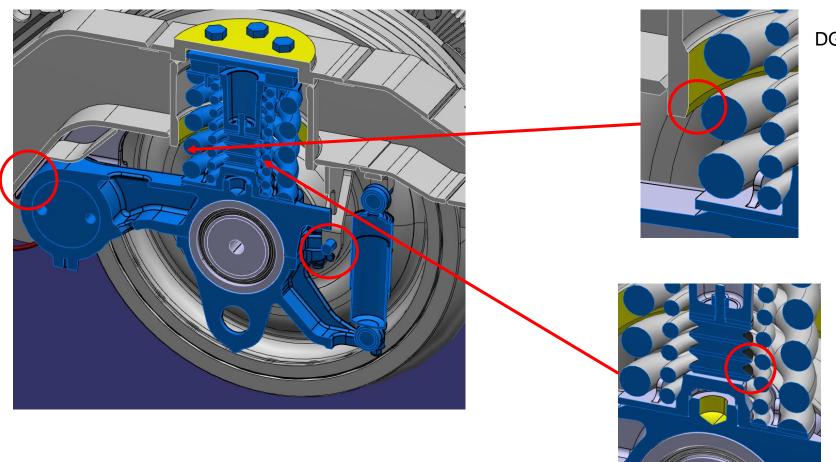
Neben der 1. Bewertung mit Hilfe der FIMO-Analysen wurden zusätzlich folgende Kriterien gewählt:

- Fahrzeuge/Fahrwerke, welche bei Bahnen häufig eingesetzt werden
- Alter der Fahrwerke, nur Fahrwerke welche aktiv im Einsatz stehen
- Potentialeinschätzung des Herstellers für Zukunft

Bisher wurden FW von TPF ABe 4/12, RhB RTZ und ZTZ, RBS Worbla, MGB Komet und Orion untersucht.

Vorgehen

Für jedes Fahrzeug wurden die typischen, kleinsten Bogenradien der zu befahrenden Strecken ermittelt und den dazu nötigen Einstellweg der Radsätze für eine ideale Radialstellung ermittelt. Anschliessend wurden alle Komponenten analysiert, welche Kollisionen erzeugen könnten und deren maximal mögliche Auslenkungen bestimmt. Danach wurde beurteilt, ob diese Engstellen mit vertretbarem Aufwand behoben werden können oder ob sich daraus eine zwingende Einschränkung der Radsatzbewegung ergibt.

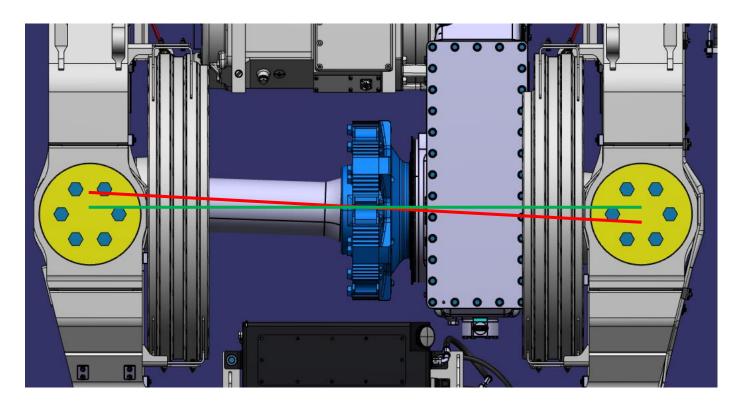


Grobauswahl – untersuchte Drehgestelle

Fahrzeug	Streckenradius	DG-Typ	Achsstand	Potential Serie		
TPF ABe 4/12	80 m	MDG	2000 mm	20 (NStCM) + 16 (MOB) + 12 (Travys) + 16 (MBC) + 18 (TPF) = <u>82 MDG</u>		
		LDG	1800 mm	20 (NStCM) + 6 (Travys) + 8 (MBC) + 36 (TPF) = <u>70 LDG</u>		
RhB RTZ	60 m	MDG	2000 mm	102		
		LDG	1800 mm	280		
RhB ZTZ	45 m	LDG	1800 mm	30		
RBS Worbla	60 m	MDG	2000 mm	32 (RBS) + 10 (AB) + 20 (AVA) + 6 (BLM) + 12 (LEB) = <u>80 MDG</u>		
		JDG	2150 mm	48 (RBS) + 3 (BLM) + 12 (LEB) = <u>63 JDG</u>		
MGB Komet	75 m	MDG	2540 mm	24		
		LDG	1800 mm	28		
MGB Orion	75 m	AZMDG	2400 mm	108 (Vorbereitet für Schlingerdämpfer → aktiver Drehdämpfer ADD)		

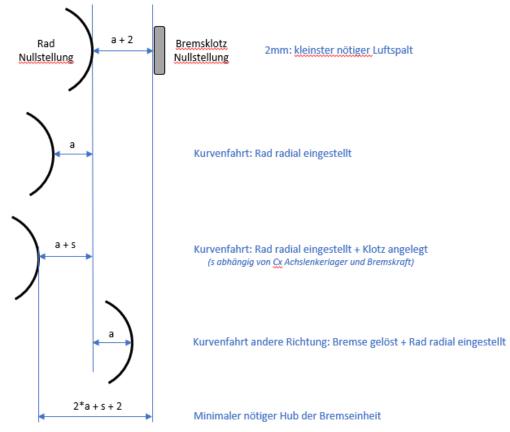
Untersuchte Stellen: Primärfederung

Berührung DG-Rahmen - Aussenfeder

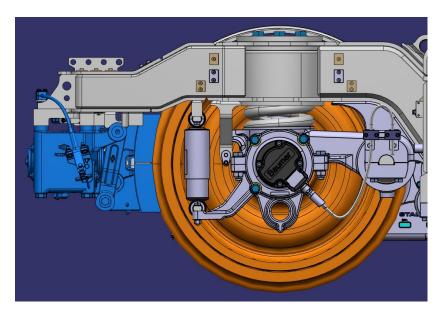

Weitere untersuchte Stellen:

- Achslenker (Berührung DG-Rahmen und Abhebesicherung, Einbau Aktuator)
- Festigkeit Feder (Knickung)
- Primärdämpfer (Berührung Abhebesicherung)

Berührung Puffer - Innenfeder

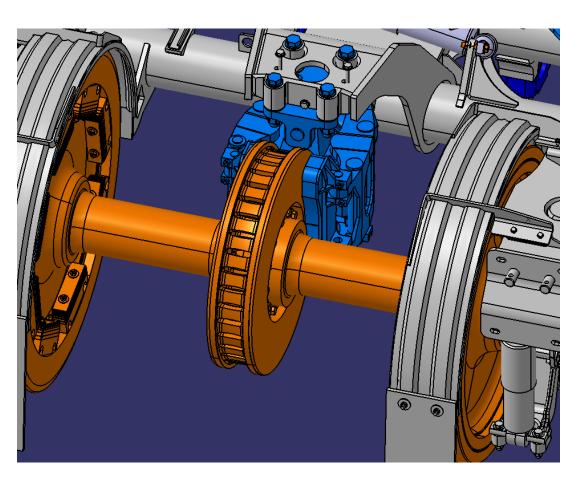

Untersuchte Stellen: Achsantrieb - Keilpaketkupplung

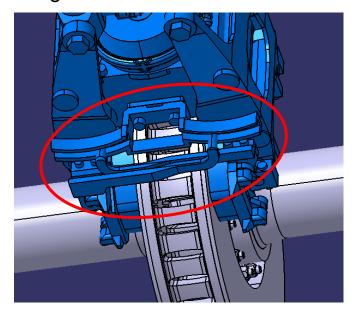
- Radialeinstellung des Radsatzes
- Antrieb mit dem Rahmen in Längsrichtung steif verbunden
- → Keilpaketkupplung beansprucht
- → Nur symmetrisches Ausdrehen ohne resultierenden Längsweg auf Höhe Keilpaketkupplung möglich
- → Übertragung der Längskräfte über Keilpaketkupplung kritisch



Untersuchte Stellen: Interaktion Klotzbremse - Rad

a = Längsweg beim radial Einstellen in eine Richtung (Gesamtweg = 2*a)


s = Einfederweg Achslenkerlager


- Parameter vom Bremslieferant festgelegt
- · Jede Bremseinheit ist anders eingestellt
- Nachstellfunktion nicht für grosse Längsbewegungen ausgelegt
- → Längsweg ist durch die Nachstellfunktion begrenzt
- → Je nach Ausführung sind maximal 2.6 bis 6mm Hub möglich

Untersuchte Stellen: Interaktion Bremszange - Bremsscheibe

- Längs- und Querbewegungen der Bremsscheibe nicht problematisch (Bremszange kippbar)
- Parallelführung der Bremsbeläge muss ev. ausgebaut werden

Untersuchte Drehgestelle – Zusammenfassung

Fahrzeug beidse		Δx Achslenker beidseitig (optimal)	Aussenfeder zu Rahmen			Bremseinheit (Achslenkerlager unendlich steif)	Übrige kritische Stellen		
						± 4mm Hub am Rad (mit Umbau			
TDE ADA 4/12	MDG	± 9.6mm	kritisch	o.k.	o.k.	6mm)	Radschutzblech, Schmierdüsen anpassen		
TPF ABe 4/12	LDG	± 8.3mm	o.k.	eng	Winkel prüfen (unktitisch)	Bremszange unproblematisch	Achslenkergeometrie und Radschutzblech anpassen		
RhB RTZ	MDG	± 12.8mm	o.k.	o.k.	o.k.	± 2.6mm Hub am Rad	Berührung Hohlwelle und Keilpaketkupplung prüfen		
	LDG	± 11.5mm	o.k.	kritisch	o.k.	± 4mm Hub am Rad	keine		
RhB ZTZ	LDG	± 15.3mm	o.k.	o.k.	o.k.	± 2.5mm Hub am Rad	keine		
RBS Worbla	MDG	± 12.8mm	kritisch	kritisch	Winkel prüfen (unktitisch)	Bremszange unproblematisch	Achslenkergeometrie, Radschutzblech, Schmierdüsen		
	JDG	± 13.7mm	o.k.	eng	Winkel prüfen (unktitisch)	Bremszange unproblematisch	Achslenkergeometrie anpassen		
MGB Komet	MDG	± 15.6mm	Punkte nicht untersucht, da Achsantriebbefestigung keine Radialeinstellung ermöglicht						
	JDG	± 9.2mm	o.k.	eng	o.k.	± 2.6mm Hub am Rad	keine		
MGB Orion	AZMDG	na	na	na	na	na	Übertragbare Kräfte		

Bisherige Erkenntnisse

Freigängigkeit der Radsätze

Zwei Komponenten haben sich bei den bestehenden Drehgestellen in vielen Fällen als bestimmend für eine mögliche maximale Radialeinstellung der Radsätze erwiesen:

1. Klotzbremsen

Diese lassen nur einen stark eingeschränkten Längsweg zwischen Radscheibe und Klotz zu.

2. Teilabgefederter Antrieb mit Keilpaketkupplung

Diese Antriebsart erträgt keine Längsverschiebung des Radsatzmittelpunktes im Drehgestell. Es sind nur gegensinnige Längsbewegungen in den Achslenkern möglich. Kräfte begrenzt.

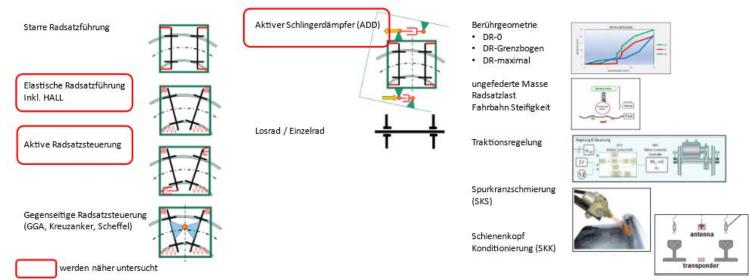
- → Bei Nachrüstlösungen kann keine vollständige Radialeinstellung für sehr enge Bögen erreicht werden
- → Auch mit ADD kann keine vollständige Radialeinstellung erreicht werden (Sehnenstellung)

Vertiefte Untersuchungen

Fahrzeug	Engster Strecken- radius	DG-Typ	Anzahl Serie	Klotzkraft + Bremskraft pro Rad	Δx am Achslenker (beidseitig verstellt)	Ent- sprechender Kurvensradius (optimale rad. Einstellung)	Abstand Aussen- feder zu Rahmen	Abstand Innenfeder zu Gummi- puffer	Übrige kritische Stellen
TPF ABe 4/12	80 m	MDG	20 (NStCM) + 16 (MOB) + 12 (Travys) + 16 (MBC) + 18 (TPF) + 10 (CJ) = <u>92</u>	42.7 kN (MOB) 36.9 kN (TPF)	±9.1 mm *	85 m	-5.3 mm	2.6 mm	Radschutzblech, Schmierdüsen anpassen
		LDG	20 (NStCM) + 6 (Travys) + 8 (MBC) + 36 (TPF) = <u>70</u>	5.8 kN (Scheibenbremse)	±8.3 mm	80 m	11.2 mm	0.2 mm	Radschutzblech und Schmierdüsen anpassen
RhB RTZ	60m	LDG	<u>280</u>	21.6 kN	±6.0 mm *	115 m	6.2 mm	-3.5 mm	keine
MGB Orion	75 m	AZM	<u>108</u>	na	na	«Sehnen- stellung»	na	na	Übertragbarkeit der Kräfte

^{*} Durch max. Hub der Klotzbremseinheit begrenzt

Ausblick 2024


- LO-2.3 Spezifikation der realisierbaren Lösungsansätze (konstruktiv, lauftechnisch, etc.)
 - Die realisierbare(n) Nachrüstlösung(en) soll(en) derart spezifiziert werden, dass diese im Detail entwickelt werden können. Konstruktive und lauftechnische Untersuchungen sollen die Umsetzbarkeit der Lösungen aufzeigen.
 - → Umsetzbarkeit einer Lösung
- LO-2.4 Nachweisrechnung der Wirksamkeit der gewählten Lösungen (VIF)
 - Die spezifizierten Nachrüstlösungen, welche als umsetzbar scheinen, sollen durch das VIF vertieft hinsichtlich Wirksamkeit untersucht werden. Ziel ist eine quantitative Aussage zur Wirksamkeit zu erhalten.
 - → Quantitative Aussage zur Wirksamkeit der Lösung

Nächsten Schritte

Vertiefte Analysen

- 1. Analyse des notwendigen Bauraums für Lösungsvarianten
- 2. Nutzen/Wirkung der erfolgsversprechenden Lösungen (Analysen mit FIMO) bewerten

- 3. Entgleisungsverhalten bei Fehlsteuerung bzw. Ausfall der aktiven Komponenten analysieren
- 4. Grundlagen für Wirtschaftlichkeitsbetrachtungen (Kosten/Nutzen) erarbeiten